Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions.

Identifieur interne : 000368 ( Main/Exploration ); précédent : 000367; suivant : 000369

Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions.

Auteurs : P R K. Ingvarsson ; Carolina Bernhardsson

Source :

RBID : pubmed:31892948

Abstract

Future climate change has been predicted to disrupt local adaptation in many perennial plants, such as forest trees, but the magnitude and location of these effects are thus far poorly understood. Here, we assess local adaptation to current climate in European aspen (Populus tremula) by using environmental association analyses to identify genetic variants associated with two representative climate variables describing current day variation in temperature and precipitation. We also analysed patterns of genetic differentiation between southern and northern populations and observe that regions of high genetic differentiation are enriched for SNPs that are significantly associated with climate. Using variants associated with climate, we examined patterns of isolation by distance and environment and used spatial modelling to predict the geographic distribution of genomic variation in response to two scenarios of future climate change. We show that climate conditions at a northern reference site will correspond to climate conditions experienced by current day populations located 4-8 latitude degrees further south. By assessing the relationship between phenotypic traits and vegetative fitness, we also demonstrate that southern populations harbour genetic variation that likely would be adaptive further north under both climate change scenarios. Current day populations at the lagging edge of the distribution in Sweden can therefore serve as sources for introducing adaptive alleles onto northern populations, but the likelihood of this largely depends on naturally occurring levels of gene flow.

DOI: 10.1111/eva.12792
PubMed: 31892948
PubMed Central: PMC6935590


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide signatures of environmental adaptation in European aspen (
<i>Populus tremula</i>
) under current and future climate conditions.</title>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation>
<nlm:affiliation>Department of Plant Biology, Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden.</nlm:affiliation>
<wicri:noCountry code="subField">Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bernhardsson, Carolina" sort="Bernhardsson, Carolina" uniqKey="Bernhardsson C" first="Carolina" last="Bernhardsson">Carolina Bernhardsson</name>
<affiliation>
<nlm:affiliation>Department of Plant Biology, Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden.</nlm:affiliation>
<wicri:noCountry code="subField">Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Ecology and Environmental Science Umeå University Umeå Sweden.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Environmental Science Umeå University Umeå Sweden.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31892948</idno>
<idno type="pmid">31892948</idno>
<idno type="doi">10.1111/eva.12792</idno>
<idno type="pmc">PMC6935590</idno>
<idno type="wicri:Area/Main/Corpus">000536</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000536</idno>
<idno type="wicri:Area/Main/Curation">000536</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000536</idno>
<idno type="wicri:Area/Main/Exploration">000536</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide signatures of environmental adaptation in European aspen (
<i>Populus tremula</i>
) under current and future climate conditions.</title>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation>
<nlm:affiliation>Department of Plant Biology, Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden.</nlm:affiliation>
<wicri:noCountry code="subField">Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bernhardsson, Carolina" sort="Bernhardsson, Carolina" uniqKey="Bernhardsson C" first="Carolina" last="Bernhardsson">Carolina Bernhardsson</name>
<affiliation>
<nlm:affiliation>Department of Plant Biology, Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden.</nlm:affiliation>
<wicri:noCountry code="subField">Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Ecology and Environmental Science Umeå University Umeå Sweden.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Ecology and Environmental Science Umeå University Umeå Sweden.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Evolutionary applications</title>
<idno type="ISSN">1752-4571</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Future climate change has been predicted to disrupt local adaptation in many perennial plants, such as forest trees, but the magnitude and location of these effects are thus far poorly understood. Here, we assess local adaptation to current climate in European aspen (
<i>Populus tremula</i>
) by using environmental association analyses to identify genetic variants associated with two representative climate variables describing current day variation in temperature and precipitation. We also analysed patterns of genetic differentiation between southern and northern populations and observe that regions of high genetic differentiation are enriched for SNPs that are significantly associated with climate. Using variants associated with climate, we examined patterns of isolation by distance and environment and used spatial modelling to predict the geographic distribution of genomic variation in response to two scenarios of future climate change. We show that climate conditions at a northern reference site will correspond to climate conditions experienced by current day populations located 4-8 latitude degrees further south. By assessing the relationship between phenotypic traits and vegetative fitness, we also demonstrate that southern populations harbour genetic variation that likely would be adaptive further north under both climate change scenarios. Current day populations at the lagging edge of the distribution in Sweden can therefore serve as sources for introducing adaptive alleles onto northern populations, but the likelihood of this largely depends on naturally occurring levels of gene flow.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31892948</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1752-4571</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Evolutionary applications</Title>
<ISOAbbreviation>Evol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide signatures of environmental adaptation in European aspen (
<i>Populus tremula</i>
) under current and future climate conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>132-142</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/eva.12792</ELocationID>
<Abstract>
<AbstractText>Future climate change has been predicted to disrupt local adaptation in many perennial plants, such as forest trees, but the magnitude and location of these effects are thus far poorly understood. Here, we assess local adaptation to current climate in European aspen (
<i>Populus tremula</i>
) by using environmental association analyses to identify genetic variants associated with two representative climate variables describing current day variation in temperature and precipitation. We also analysed patterns of genetic differentiation between southern and northern populations and observe that regions of high genetic differentiation are enriched for SNPs that are significantly associated with climate. Using variants associated with climate, we examined patterns of isolation by distance and environment and used spatial modelling to predict the geographic distribution of genomic variation in response to two scenarios of future climate change. We show that climate conditions at a northern reference site will correspond to climate conditions experienced by current day populations located 4-8 latitude degrees further south. By assessing the relationship between phenotypic traits and vegetative fitness, we also demonstrate that southern populations harbour genetic variation that likely would be adaptive further north under both climate change scenarios. Current day populations at the lagging edge of the distribution in Sweden can therefore serve as sources for introducing adaptive alleles onto northern populations, but the likelihood of this largely depends on naturally occurring levels of gene flow.</AbstractText>
<CopyrightInformation>© 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<Identifier Source="ORCID">0000-0001-9225-7521</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bernhardsson</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-3258-275X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Linnean Centre for Plant Biology Swedish University of Agricultural Sciences Uppsala Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science Umeå University Umeå Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Evol Appl</MedlineTA>
<NlmUniqueID>101461828</NlmUniqueID>
<ISSNLinking>1752-4571</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">adaptation</Keyword>
<Keyword MajorTopicYN="N">climate change</Keyword>
<Keyword MajorTopicYN="N">gene flow</Keyword>
<Keyword MajorTopicYN="N">local adaptation</Keyword>
<Keyword MajorTopicYN="N">population structure</Keyword>
</KeywordList>
<CoiStatement>None declared.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31892948</ArticleId>
<ArticleId IdType="doi">10.1111/eva.12792</ArticleId>
<ArticleId IdType="pii">EVA12792</ArticleId>
<ArticleId IdType="pmc">PMC6935590</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Mar;193(3):929-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23307896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Apr 24;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29685183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2011 Jul;65(7):2123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21729066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Sep;23(9):1514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1983 Nov;37(6):1210-1226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28556011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Aug;185(4):1411-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2012 Apr-Jun;6(2):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10970-E10978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26416746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Oct 9;9(1):4173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30301891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Jul;67(7):2094-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23815662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Nov;186(3):1033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):469-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Jan;18(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2017 Sep 01;7(19):7998-8007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29043051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jun;19(6):1645-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2008 Feb;1(1):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Jul;30(7):1687-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2017 Dec 21;109(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29126208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2015 Aug 24;9(1):271-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27087852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2009 Feb;84(2):210-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19200528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jun;16(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Dec;25(23):5907-5924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27759957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Sep;24(17):4348-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2018 Jan;162(1):123-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28591431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):511-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27901272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Feb;29:73-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2018 Aug 31;11(10):1842-1858</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30459833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1987 Jul;41(4):787-798</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2018 Jun 4;19(1):72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29866176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21640632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1995 Aug;10(8):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237054</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bernhardsson, Carolina" sort="Bernhardsson, Carolina" uniqKey="Bernhardsson C" first="Carolina" last="Bernhardsson">Carolina Bernhardsson</name>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000368 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000368 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31892948
   |texte=   Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31892948" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020